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More Results on the Ashkin-Teller Model 
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We analyze the low-temperature phase diagram of the Ashkin-Teller model for 
real values of the quadratic and quartic coupling constants. 
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1. I N T R O D U C T I O N  A N D  RESULTS 

The Ashkin-Teller (AT) model is described by two coupled lsing models 
such that in each site x of the hypercubic lattice Z a, d~> 2, there are two 
independent spin variables ax = +1 and 3, .= _1.  The Hamiltonian in a 
finite box A c Z u is formally defined by 

H =  At 21 
-3- E E E (1.1) 

( . r y )  r L ( . v y )  E L ( . v y )  �9 L 

Here ( x y )  denotes a pair of nearest-neighbor sites and L is the set of 
bonds b = ( x y )  in A. 21 and 22 are real coupling constants. 

The AT model has been extensively studied by means of approximate 
and numerical methods (see refs. 1 and 2 and references therein). The. 
ferromagnetic case corresponding to the positive values of 2~ and 22 was 
solved exactly by Baxter ~ in dimension d =  2. He obtained that there exist 
two phase transitions with a symmetry breakdown for some values of ).1 
and 22. Baxter's result has been extended to all dimensions d~>2 by 
Pfister ~41 by using the correlation inequalities. 

Our  goal is to analyze the phase diagram and discuss the nature of the 
pure phases occurring in the AT model at low temperature for certain 
values of the couiglings ),1 and )-2 not necessarily positive. The method we 

Laboratoire de Magn6tisme, Facult6 des Sciences, Rabat B.P. 1014, Morocco. 
2 On leave from l~cole Normale Sup6rieure, B.P. 5118, Rabat, Morocco. 

1185 

0022-4715/94/0300-1185507.00/0 ~" 1994 Plenum Publishing Corporation 



1186 Benyoussef et  al.  

I 

ill o) 

II 

Fig. 1. The low-temperature phase diagram in ihe plane (f12,, fl22). (a) In region I there are 
two coexisting phases, (b) in region I! two phases coexist, (r in region Ill there exist four 
coexisting ferromagnetic phases, (d) in region IV four antiferromagnetic phases coexist. 

use is based on the Pirogov-Sinai (PS) theory r and its extension by 
Bricmont et aL {6) (BKL). 

To formulate the results we obtain in the plane (fl).~,/322) (see Fig. 1), 
we first introduce a positive constant c > 0 and a large positive parameter 
/t depending on the dimension d, p =/~(d). 

Result 1. For fl2_,>/~(d) and 2/3 I~1 < l n [ d / ( d - 1 ) ] :  There exist 
two limiting extremal Gibbs states. 

Result 2. For f l22<- /a (d )  and 12~1~<-c-22_,: There exist two 
limiting extremal Gibbs states. 

Result3.  For /32~ >/~(d) and ~t~ ~>c-22_,: There exist four limiting 
extremal Gibbs states. 

Result 4. For f l2 t<- /~ (d}  and 2~<~-c+222 :  There exist four 
limiting extremal Gibbs states, 

2. PROOF OF THE RESULTS 

We only sketch the proof of the results announced in Section 1. 
Concerning result 1, we refer the reader to the BKL theory for details. 

First we transform the Ashkin-Teller model described by the 
Hamiltonian (I.1) into the Z(4) model with the Hamiltonian 

[2~z(,,,.-n,.)'~ (4x(n - n.,.)) 

<.x-y ) ,E L < . tW> E L 
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Here nx belongs to the Abelian group G = {0, 1, 2, 3 } with addition mod(4) 
as a group law. To obtain the expression (2.1) from the Hamiltonian (1.1) 
we define a two-dimensional vector 

such that 

S , . :  (cos ( ~ ) ,  " .  sin ~---~--)) [2In.<'\'~ 

 x--cos 

We will denote by/2  the configuration space, /2 = HxE z~ Gx, Gx = G; 
the restriction of/2 to finite box A is denoted ~A. 

Finally, we define the Hamiltonian per bond 

2.1. Proof of Result 1 

2.1.1. Restricted Ensembles and Di l u t eness .  Suppose that 
21 = 0 in (2.2) and 22 > 0; then the configurations n ~ ~ which minimize the 
energy are the following: 

o r  

nx--n.,,=O, V(xy)~L (2.3a) 

n.,.- n:. = 2, V(xy)~L (2.3b) 

We see that there exist two ensembles of configurations which realize the 
condition (2.3), 

[2)= {neOIn(x)=O, 2, VxeZ a} 

o)=  {n ~Oln(x)= 1, 3, Vx ~Z"} 

Referring to the BKL theory, we obtain two restricted ensembles ~) 
and P~. 

Now we suppose that 21 4:0 and we seek the condition to impose on 
fl 1211 in order to preserve the restricted ensembles p t  and Q]-. f 
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We define the restricted partition function 

ZR(A, i l i a )=  ~ exp-flHA(N) (2.4) 
,,E t/~ 

By using the identity 

c ~  2 (n ' ' -  n ') r e ) 4  = --~+26(nx-n")--~c~ 4 ( n ~ - n ' ' , r t ) "  -4  " 

where 6 is the Kronecker symbol satisfying 6(ct)= 1 if : = 0 mod(4) and 
6(ct) = 0 otherwise, we write the Hamiltonian (2.2) as 

Hb(n) = 21/2 -- (22 -- 21/2) cos[(n, -- ny) n] -- 2216(nx-- ny) 

The restricted partition function is equal to 

ZR(A, fllm)=exp[fl(2:-21)L(A)] ~ exp[2fl2, ~" 6(n.,-ny)] 
(2.5) 

where L(A) is the number of bounds in A. 
Now we consider the last expression in (2.5), 

n < x y > e L  

Suppose that fl21 (21 >0)  is large; it follows that the configurations which 
minimize the energy are such that nx-n.,.=O for every bond <xy> and 
then the condition (2.3b) is not satisfied. 

Let fll211(21<0) be large; then the configurations satisfying 
n , . - n y =  2 for every bond <xy> minimize the energy and the condition 
(2.3a) fails 

We conclude that for fl I;~11 large the conditions (2.3a) and (2.3b) are 
not compatible. 

To preserve the condition (2.3), i.e., to get a control of the excitations 
(in terms of fl21) which "destabilize" the restricted ensembles s'2)- and f2j: 
corresponds to verifying the diluteness property introduced in BKL. 

The diluteness property means that we need a convergent cluster 
expansion (strong clustering properties) for the restricted ensembles in 
order to prove the existence of their free energies fR(ct), 

12L 1 
fR(•) = - ~  : l n Z s ( A ,  fllot) (2.6) 

L ( / I )  
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To prove the diluteness property we use the "high-temperature expansion" 
for the partition function 

ZR(A,/~1~)= ~ exp I2/~21 ~ 6(nx-n.,.)] (2.7) 
n~t2~ L ( x y ) e L  A 

Since for every configuration n e Q~, the variable nx takes only two values, 
then (2.7) is the partition function of the Ising model obtained by using the 
identity 

6(n~-n,,) - 1 + cr.~a.,. 
�9 " 2 ' a x = _ _ l  

Therefore (2.7)is reduced to 

exp[/L1.2L(A)] ~ exp(//21 Y' a.,.ay) (2.8) 
{a} ( x y ) E L  

and it is known that for Itanh/~2tl ( 2 d -  1)< 1 the expression (2.8) satisfies 
a convergent cluster expansion. 

It follows that once the condition 1/~211 < ln{ [d/(d-  1)] 1/2} is satisfied, 
we use the algebraic formalism (8'9) to prove that the free energy defined in 
(2.6) exists and the restricted ensembles 12~, ~ = 1, 2, are dilute. 

2.1.2. The Low-Temperature Expansion. To prove that there 
exist two phases corresponding to the low-temperature excitations of the 
two restricted ensembles I2.~-, c~ = 1, 2 we use the PS Theory and its BKL 
extension. In this formalism the low-temperature excitations are generated 
by contours separating regions in A with boundary conditions in f2~, 

= 1, 2. These excitations will be controled whenever the Peierls condition 
(an exponential decay of the probability of a contour with its length) is 
verified. 

To define contours we introduce the following notations. For a given 
configuration n ~ Q, a bond ( x y )  is regular if the restriction of this con- 
figuration to the sites x and y belongs to the same restricted ensemble f2~, 
~=  1, 2. Otherwise the bond ( xy )  is irregular. The set B(n) of irregular 
bonds in n forms a geometric configuration of bonds in L. Its dual B*(n) 
is decomposed into its connected components, which we call contours. 

Taking into account that 6(n~- ny)= 0 and cos rc(nx- n,.)= -1  for all 
bonds in B(n) and considering the symmetry Z(A,//I 1)=Z(A,//12),  one 
easily reduces the system to a contour model with weak interactions 
controlled by the convergent cluster expansion in (2.8), and the Peierls 
inequality for the contour correlation function is obtained by the same 
method in the interacting contour model (Appendix 2 in BKL). 

822/74/5-6-16 
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One proves that there exist two limiting extremal Gibbs states P~ and 
P2 such that 

P t ( n x = 0  or 2 )>  �89 and P2(nx= 1 or 3)>�89 

2.2. Proof of Result 2 

2.2.1. R e s t r i c t e d  E n s e m b l e s .  Let 22_,< -I~-tl; then there exist 
two restricted ensembles f2~: and f2]: obtained as follows: We consider a 
bipartite lattice A defined as the union of two sublattices A t and Az such 
that for each site x ~ At (resp. x ~ A2) the neighbor sites V.~ of x belong to 
A, (resp. At). We also introduce the set X = { 0 , 2 }  and Y={1 ,3} ,  to 
define 

12if= {nEf21V(xy ), nxEX, xEA= and n.,.E Y, y~Aa, ct 56} 

Since 

((n" -~n"') re) = 0, Vn~ ~/ 
COS .Q ~ 

therefore the restricted partition function with the Hamiltonian (2.1) is 

ZR(A,/31r = )". exp--~HA(n) 
n ~ t2~t 

= exp[-- / /22L(A)]  
11 E ~"~=af 

= 2 TM e x p [ - f l 2 z L ( A ) ]  (2.9) 

Hence t2,~ s is the class of the ground states with the residual entropy (the 
entropy at zero temperature) considered in ref. 7. We notice that it follows 
from the formula (2.9) that the residual entropy per site is In 2. 

2.2.2. The Low-Temperature  Expansion. In this section we 
introduce the notion of regular and irregular plaquettes. 

For a given configuration n e t2, a plaquette p is regular if the restric- 
tion of the configuration n to the sites which are endpoints of bonds in the 
boundary of the plaquette p belongs to the restricted ensemble O~=f. 
Otherwise the plaquette p is irregular. 

We denote by ~(n)  the set of irregular plaquettes in n and by LP(n) 
the set of bonds in the boundaries of the plaquettes in ~.  Finally we define 
~ ( n )  as the set of sites which are endpoints of the bonds in ~(n) .  
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The set ~ ( n ) =  (~(n), L#(n), 5e(n)) is decomposed into its connected 
components, which we call contours. Here a contour y is a pair, y = (F, nr), 
of its support F and the configuration nr restricted to this support. 

Since the configurations are specified on the sites in the boundary of 
F and belong to the restricted ensemble s then 

cos (.(nx ~n-") ~) = 0, xeSP(F), yeA\SP(F)  

Here ~ ( F )  is the set of sites in F. Moreover, we obtain a noninteracting 
contour model as in the standard PS theory. 

To verify the Peierls condition it suffices to get an upper bound on the 
expression 

2-Ir l  exp[fl2zL(r) ] Z( F, /~l v) (2.10) 

Here the partition function is 

Z(F, fllv)= ~, vr(n)exp- f lHr(n)  (2.11) 
n~Qdt 

and vr(n) is the characteristic function that F is the support of a contour 
~, in the configuration n. 

To obtain an upper bound for the expression (2.11) we introduce the 
following definitions. 

A bond ( x y )  is a regular bond if it satisfies 

nx e X (resp. nx e Y) and n,, E Y (resp. ny e X) 

A bond ( x y )  is an excited bond if 

n.,. e X (resp. nx e Y) and ny ~ X (resp. ny e Y) 

We denote by E(F) (resp. W(F)) the number of excited (resp. regular) 
bonds in F. In fact, L(F)= E(F)+ W(F). 

Since for an excited bond 

( (nx -nY)  ~)  = +1 
cos 2 - 

we get 

Z(F, fl[ v) <-% 2 Irl exp{ - f l 2z [  W(F) - E(F) ]  } exp{/3 12, [ E(F)} 
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Therefore the expression (2.10) is bounded by 

exp[P(12tl + 2).2) E ( F ) ]  (2.12) 

Now we introduce a positive constant c > 0 such that 

-12,1/> 222 + c (2.13) 

to obtain that the expression (2.12) is bounded by 

exp -3cE(1-') (2.14) 

Since each plaquette p of F contains 2 or 4 excited bonds of F, we get a 
bound in terms of the number of plaquettes and the number of bonds 
in F, 

f(r)>Pa(r_ )l ~ L(r)_ 
2(d- 1 ) 

Therefore (2.10) is bounded by 

L( / ' )  
exp - t i c  - -  (2.15) 

2 ( d -  1) 

and the Peierls condition is verified whenever/3 is large. 
We conclude that whenever the conditions (2.13) and (2.15) are 

satisfied there exist two phases corresponding to small perturbations of the 
restricted ensembles Q]:., ct = 1, 2 

Proof of Results 3 and 4 

1. For 
2~>0  and 2 ~ + 2 2 2 > 0  

there exist four ferromagnetic ground states, which we denote 

12"-  {n~f2lnx=ct ,  V x e Z  a} f -  

2. For 
) .1<0 and - ) . t  + 2).2> 0 

there exist four antiferromagnetic ground states defined as follows: Defining 
the sets X = { 0 , 2 }  and Y = { 1 , 3 }  and considering a bipartite lattice 
A = A ~ w A 2, we obtain 

O~af(X) = {n E I2 In,. = 0, xeA~ and n .=2, yeAa, ct~6, V ( x y )  e L }  

O~t-(Y)  = {n ~ f2 In.,. = 1, x e A ,  and n,.= 3, y~A~, ct 56, V(xy)  e L }  

The contours are defined as in Section 2.2.1 and the standard Peierls 
condition is satisfied for fl large and I).t[ + 2).z >/c, c > 0. 
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3. C O N C L U S I O N  A N D  O P E N  P R O B L E M S  

1. The line 2 , = 2 2 z  with 2 , < 0  and 2 2 < 0  corresponds  to the 
ant i ferromagnet ic  four-state Pot ts  model,  for which it was argued that,  for 
high dimensions,  the t runcated correla t ion functions go from an exponen-  
tial decay (in the h igh- tempera ture  regime) to an algebraic power  law 
decay (in the low- tempera ture  regime). This is based on numerical  com- 
puta t ions  performed by Berker and Kadanof f  ~j~ for the ant i ferromagnet ic  
q-state Pot ts  models  for q i> 3; we refer the reader  to ref. 11 for a review of 
recent results. 

2. On  the line 2~=  - 2 2 2  with 2 t > 0  and 2 2 < 0 ,  it seems that  for 
high dimensions ( d > 2 )  there exist two different tempera ture  regimes~l~; 
nevertheless the result from ref. 2 disagrees with the conclusions of ref. 1. 
Still considering a bipar t i te  lattice, A = A, w A 2, if we replace n.,. by n.,. - 2 
for each site x ~ A ~ ,  we obta in  the ant i ferromagnet ic  four-state Pot ts  
model;  then the two lines discussed above  are related by a symmetry.  

3. F o r  very low temperatures ,  we show that  the two lines are 
a s y m p t o t i c  to the boundar ies  of the phase d iagram we obta in  (see Fig. 1 ). 
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